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Equations a re  formulated which descr ibe  the t rans fe r  of heat f rom a solid core in a para l -  
lelepiped to a cooling fluid passing through the parallelepiped. Kantorovieh 's  method of 
reduct ion to ord inary  differential equations is used to obtain an approximate solution of the 
equations. 

A problem frequently encountered in pract ice  is that of the t rans fe r  of heat f rom a sys tem of spa-  
t ially distributed objects to a flow of cooling fluid (gas). Such problems crop up, in part icular ,  in the 
determinat ion of the t empera tu re  fields in rad io-e lec t ron ic  devices,  which have a re la t ively  large number 
of components mounted with a substantially uniform density. In many cases (in rad io-e lec t ron ic  apparatus,  
for example) the sys tem to be cooled is situated in a container and is i tself  a more  or less uniform genera-  
tor  of energy. The flow of cooling fluid is directed along one of the axes of the parallelepiped. If the com-  
ponents of the sys tem a re  much smal le r  than the overall  size of the block on which they a re  mounted, the 
block can be regarded as approximately uniform and can be described by means of certain effective pa ram-  
eters  (thermal conductivity, specific heat capacitance, hea t - source  density, volume coefficient of internal 
convection, and so on). Methods a re  known [1] by means of which various types of distributed sys tems  can 
be reduced to a uniform block with an effective thermal  conductivity and an effective hea t - source  density. 
The formulas  for the effective thermal  conductivity take account of heat t ransfer  by radiation. 

The volume coefficient of heat t r ans fe r  (c~V) is either known direct ly  [2] or can be expressed in 
t e rms  of the known surface coefficient of heat t r ans fe r  (c~s) 

S v 
C~V ~ ~ s - v  " 

The effective parameters of the equivalent uniform block can thus be determined in many practical 
cases. Analysis of the temperature field of the distributed system then reduces to solving a set of two 
equations, the thermal conductivity equation of the block with volume convection taken into account, and 
the block-coolant heat-transfer equation 

L 2 
x 

02~ ky 02~ Lz 0~0~ (la) 
0x2 + - -2 -  - - +  L 2 = - - % ( O ~ - - ~ I ) = - - q ;  Lu @2 ~ Oz 2 

1 0e~ (lb) 
% =o~+2d ~ - ~  ; 

1 _ C p y U  @~=t w-t~, 8 / = t / - - t  e. (lc) 
Lxu v ' 

In the subsequent discussion we shall assume that u - const; q const. 

Equations (la) and (Ib) constitute a closed set of differential equations for Jw and $f. if the heat 
transfer from the parallelepiped to the surrounding medium follows Newton's law with the heat-transfer 
coefficients being identical in pairs at opposite faces, and if the temperature of the cooling fluid at the 
inlet equals the temperature of the surrounding medium, the boundary conditions of the problem can be 
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wri t ten in the form: 

[ 0 ~ + 2 B i s l }  ] =0 ,  [0ff~, - - 2 B i i ~ ]  =0 ,  (2a) 
JT=' 0] JT=O 

- -  a j L i  , ] = x, y, z; Bij ~ i  

[~J]~--0 = 0. (2b) 

As far  as we a r e  aware  no p rec i se  solution of the above problem has been published in the l i te ra ture .  

We aim to solve the problem by Kantorovich 's  method of reduetion to ordinary  differential  equations 
[3], which is sufficiently aeeura te  for  engineering calculations. The e r r o r  associa ted with the f i r s t  ap-  
proximation of this method is comparable  with the e r r o r  in the determinat ion of the thermophysical  pa ram-  
e te r s  ~t, c~ and with the e r r o r  involved in making the t rans i t ion to an equivalent uniform block. Conse- 
quently, for  the present  purposes  there  is no point in t rying to find solutions be t te r  than the f i r s t  approxi-  
mation. 

We seek the functions d w and 3 f in the form: 

g~i%i%v 
/ : I  i = 1  

Here  ~yi(Y) and ~zi(~) are_chosen so as to sat isfy the requ i rements  of comple teness  [3] and boundary 
conditions (2a); the functions fxi(X), gxi(X) a r e  found f rom the orthogonali ty conditions 

I ~ (3) jJ'L (%)%,%/y =0, 
0 0  

where  

L ( ~ ) - -  ;% 0 ~ '  )~ 02~  ~'~ 02~' % ( O ~ - - O j ) + q .  (4) 
L~ #x 2 + - - T - - - -  Lz cOz 2 Lv O~ ~ + 2 = 

Rest r ic t ing  the discussion to the f i r s t  approximation and dropping in future the indices c h a r a c t e r -  
izing the number  of the approximation,  we can wri te  

(sa) ~ = ]:A~%; ~s  = g ~ % % .  

If ~gj (j = y, z) is given in the fo rm of a square- law parabola,  we have f rom boundary conditions (2a) that 

% = 1 + 2Bi i ( j - -  j~), j = Y, z, (5b) 

and consequently 

Utilizing (3) and writing 

L ( ~ )  = [~M~%%--[~(Gur %) --Rxgx%CP~ + q, 

Xx a V 4Bij~j M~=~,R~=~,  ~ j = ~ ,  j=v,z. 
x L i 

I 

y - 2 2 .2 
Ili = •2id ] ---- 1 + -~- Bi i + ~ -  B1i; 

0 

l 

I2j= r 1 + -3- Bis, 
0 

(6a) 

(6b) 

we obtain 

Inser t ion  of (5a) into (lb) gives 
g~ f x = g x +  

q I2vI2~ (7a) 

(7b) 
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El imina t i on  of the  funct ion  fx be tween  Eqs.  (7a) and (7b) g ives  the  fo l lowing f inal  d i f f e r en t i a l  equat ion fo r  gx: 

g'~" + g~ C 2 + g'~C 1 --g,:C o = --D; 

1 ( GvLv G,12~ ) 

Q (GvI2y G~I2z ~ q~ Iwl~ 
' I~uIi.  - " 

The  g e n e r a l  i n t e g r a l  of the l i n e a r  d i f f e r en t i a l  equat ion (8a) has  the  f o r m  

g~ = M~ exp (k~) + M 2 exp (k~x) + Ma exp (k~x) + - -  

w h e r e  M~, M2, Ma a r e  a r b i t r a r y  cons t an t s ,  
r o o t s  of the c h a r a c t e r i s t i c  equat ion  

D 

Co 

d e t e r m i n e d  f r o m  the bounda ry  condi t ions;  kt, k2, k 3 a r e  the  

We in t roduce  the  new v a r i a b l e  

k3+C2U--Clk - -Co=O.  

, 

3 

(Sa) 

(8b) 

(9) 

(10a) 

(10b) 

and rewrite (10a) in the form [4] 

~a + 3 ~  -}- 2s ~ 0; (10c) 

C~ + CeC, C O C~ C~ (10d) 
8=-~- 6 2; l~-- 3 9 

The formulas for k will depend on the signs of ~, /3~ and of the discriminant d =/33 + ~2. Clearly, from (10d) 
we have always that 

~<0 .  

D e t e r m i n a t i o n  of the  s igns  of e and d r e q u i r e s  a m o r e  c o m p l e x  a n a l y s i s .  On subs t i tu t ion  of e x p r e s s i o n s  
(Sb) into (10d) we  obta in  a f t e r  s o m e  man ipu l a t i on  

d - -  C~ 

tP f~ 
e = - -  + (Bi v - -  A); 

27 -~- 

(C~C 2"2 "~C ) l~z C2 o COC1C2 
4 ~ - q - ~ f f 8 q - ~ - +  6 

(Biv + A)2 f12 f12 A ~2A (Bi v + A) ] 

+ 108 + - - - ~ -  + 6 J ; 

- -  2 ]lg ' X~ Lz z Ix, / 
A = 4  \ )~:: Lv Big 

avL~ 
Bi v -  ~ 

f~2A2 [ (Biv + A) 3 

4 L 27 

(lla) 

(lib) 

(no) 

(lld) 

We note that A is independent of Bi V and Q and that 

l i m Q = 0 ,  l im~=0 ,  l imff~=oo, lim f f2=oo,  
u---~ ~V ~ 0  tt--~0 C~ V - . ~  

Bi .-,,'-0 Bi ~ x " l -  
Y BizV...r ~ x  L~2~ ] ' Biz.-.O 

since 
I Bij) Bij (l + -~ 5 

lim 2 I~ = ~- " 
Bii-~" 1 + ~ Bi ,+  Bi~ 
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Consequently, for the limiting cases a V ~ O, ~ or u -* O, co we have that 

d ~ 0 ,  e~O. (12) 

Determinat ion  of the signs of d and ~ is t roub lesome  in the case of in te rmedia te  values of aV, u. 

For  convenience the r e s t  of the d iscuss ion  will be car r ied  out with a specific class of objects in 
mind. For  example,  for r ad io -e lec t ron ic  appara tus  the pa ramete r  values a re  such that 

Bi V > 5A 

so that inequali t ies  (12) a r e  sat isfied.  We then have [4]: 

k , = ~ i - - - ~  ( i=  1,2,3); r = V ! ~ l ;  (p=arccos-~ ; r I (13) 

For  s impl ic i ty  we int roduce the notation: 

C---r176 �9 F = [x C~ (14) h--g C-~~ P1 2 3 = M i ,  2, s D ' D ' "" D'  
when (9) and (7b) can be rewri t ten:  

h = Pi exp (k 1 )-) +p~ exp (k2x) + P3 exp (k3x-) + 1, 

F=P~exp(k~)(l § ~ )  + P2exp(k~x) (1-[--~)+Paexp(k~x)(l § ~ ) §  

To de te rmine  the constants  P1,2,3 we make  use  of the boundary conditions. F r o m  (2b) in conjunction with 
(5a) and (14) we obtain: h(x = 0) = 0, f rom which 

P1 + P2 + P3 = --  1. (15a) 

F r o m  conditions (2a) in conjunction with (5a), (14), and (9b) we also have 

k~ + 2Bi~)] P i [ e x p ( k l ) [ l + - - ~ ) ( k l + 2 B i ~ )  1__ + P2[exp(k2) (l + ~ )  (k2 
A 

P~[(1 + -~)(k~--2Bix)] + P2[(1 t - ~ ) ( k z - - 2 B i ~ ) ]  + P a l ( l §  -~)(k3--2Bi~)] = 2Bi~. (15c) 

Equations (15a, b, c) de te rmine  the constants  Pl, P2, P3- 

In a number  of cases  it is  of in te res t  to de te rmine  the mean  t empera tu re  

1 

- - (  - ~ )  Ra ,  ~__k) --  Ra ( + ~ ) [ e x p ( k 3 ) - - l ] + l ;  (16a) F ~  F d x ~  P1 1 +  [exp(kl, l l + P ~ ( I +  [exp,k2) 1 ] + ~  1 
k 1 

0 

1 

.h ~- ~ hdx -~ p~ + P~ Pa ~J ks [exp(kl)-  I] k~ [exp(ka)-- 1] + ~-[exp(ka)ka , - -  1]. (16b) 

If the cooling fluid moves  through natural  convection, the rat io of the dif ference between the mean  block 
and mean  fluid t e m p e r a t u r e s  to the mean  block t empera tu re  is an impor tant  pa rame te r  upon which the total 
hydraul ic  p r e s s u r e  head of the flow depends.  This rat io is given by: 
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1 1 1  I l i  

0 0 0  0 0 0  
I I I  

0 0 0  

i P1 exp (kl) q- P2 exp (k2) -{- Pa exp (k3) 
P 

(17) 

Finally, 

D D 

1 1 

0 0 

Co 

(18a) 

(18b) 

(18c) 

where  D and C O a re  given by formulas  (8b); ~y, q)z by fo rmulas  (5b); I2y, I2z by (6b); h, F by (9a, b); h, F 
by (16a, b); the exponents kt,2, 3 by (13), (10d), (8b); the constants Pt,2,3 by (15a, b, c); by (le); Bij by (2a); 
and Bi V by (11d). 

The above formulas  were  used to construct  a p rogram for t empera tu re  field calculations on the Minsk- 
2 digital computer .  Calculations were  ca r r i ed  out for  a r ad io -e l ec t ron ic  device of casse t te  construction.  
The sa t i s fac tory  ag reement  which was obtained between computation and exper iment  enables the above 
method to be recommended  for the study of distr ibuted sys tems  with internal  convection. The l imits  of 
applicabil i ty of the formulas  a r e  set by the assumptions made in their  derivation. 

(2V, (2S 
~f 
SV 
V 

Lx, Ly, L z 
q 

q~x, ~y, ~z 
Bi 
tw(X, y, z) 

tc 
tf(x, y, z) 
U 

x = x/Lx; 

y_ = y / L y ;  
z = z / L z  
(2 

NOTATION 

are the volume and surface heat-transfer coefficients; 
is the coefficient of thermal conductivity of cooling fluid; 
is the total surface area of elements of block; 
is the volume of elements; 
are the lengths of sides of parallelepiped in directions of x, y, z axes; 
is the density of volumetric energy sources; 

are the coefficients of thermal conductivity of anisotropic body in x, y, z directions; 
is the Blot number; 
is the temperature of block at point (x, y, z); 
is the temperature of medium surrounding block; 
is the temperature of cooling fluid at point (x, y, z); 
is the mean velocity of fluid flow in x direction; 

a r e  the re la t ive  coordinates;  
is the coefficient  of heat t r ans fe r  to medium outside parallelepiped.  

i~ 

2. 
3. 

4. 
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